New Branching Rules Induced by Plethysm * B. Fauser
نویسندگان
چکیده
We derive group branching laws for formal characters of subgroups Hπ of GL(n) leaving invariant an arbitrary tensor T π of Young symmetry type π where π is an integer partition. The branchings GL(n) ↓ GL(n − 1) , GL(n) ↓ O(n) and GL(2n) ↓ Sp(2n) fixing a vector vi , a symmetric tensor gij = gji and an antisymmetric tensor fij = −fji , respectively, are obtained as special cases. All new branchings are governed by Schur function series obtained from plethysms of the Schur function sπ ≡ {π} by the basic M series of complete symmetric functions and the L = M −1 series of elementary symmetric functions. Our main technical tool is that of Hopf algebras, and our main result is the derivation of a coproduct for any Schur function series obtained by plethysm from another such series. Therefrom one easily obtains π-generalized Newell-Littlewood formulae, and the algebra of the formal group characters of these subgroups is established. Concrete examples and extensive tabulations are displayed for H 1 3 , H21 , and H3 , showing their involved and nontrivial representation theory. The nature of the subgroups is shown to be in general affine, and in some instances non reductive. We discuss the complexity of the coproduct formula and give a graphical notation to cope with it. We also discuss the way in which the group branching laws can be reinterpreted as twisted structures deformed by highly nontrivial 2-cocycles. The algebra of subgroup characters is identified as a cliffordization of the algebra of symmetric functions for GL(n) formal characters. Modification rules are beyond the scope of the present paper, but are briefly discussed.
منابع مشابه
Parabolic Kazhdan-Lusztig polynomials, plethysm and gereralized Hall-Littlewood functions for classical types
We use power sums plethysm operators to introduce H functions which interpolate between the Weyl characters and the Hall-Littlewood functions Q corresponding to classical Lie groups. The coefficients of these functions on the basis of Weyl characters are parabolic Kazhdan-Lusztig polynomials and thus, are nonnegative. We prove that they can be regarded as quantizations of branching coefficients...
متن کاملParabolic Kazhdan-Lusztig polynomials, plethysm and generalized Hall-Littlewood functions for classical types
We use power sums plethysm operators to introduce H functions which interpolate between the Weyl characters and the Hall-Littlewood functions Q corresponding to classical Lie groups. The coefficients of these functions on the basis of Weyl characters are parabolic Kazhdan-Lusztig polynomials and thus, by works of Kashiwara and Tanisaki, are nonnegative. We prove that they can be regarded as qua...
متن کاملA Hopf laboratory for symmetric functions
An analysis of symmetric function theory is given from the perspective of the underlying Hopf and bi-algebraic structures. These are presented explicitly in terms of standard symmetric function operations. Particular attention is focussed on Laplace pairing, Sweedler cohomology for 1and 2-cochains, and twisted products (Rota cliffordizations) induced by branching operators in the symmetric func...
متن کاملHopf algebras and characters of classical groups
Abstract. Schur functions provide an integral basis of the ring of symmetric functions. It is shown that this ring has a natural Hopf algebra structure by identifying the appropriate product, coproduct, unit, counit and antipode, and their properties. Characters of covariant tensor irreducible representations of the classical groups GL(n), O(n) and Sp(n) are then expressed in terms of Schur fun...
متن کاملA computational and combinatorial exposé of plethystic calculus
In recent years, plethystic calculus has emerged as a powerful technical tool for studying symmetric polynomials. In particular, some striking recent advances in the theory of Macdonald polynomials have relied heavily on plethystic computations. The main purpose of this article is to give a detailed explanation of a method for finding combinatorial interpretations of many commonly occurring ple...
متن کامل